Novel metabolic bioactivation mechanism for a series of anti-inflammatory agents (2,5-diaminothiophene derivatives) mediated by cytochrome p450 enzymes.
نویسندگان
چکیده
The thiophene moiety is considered a structural alert in molecular design in drug discovery, largely because several thiophene-containing drugs, including tienilic acid and suprofen, have been withdrawn from the market because of toxicities. Reactive thiophene intermediates, activated via sulfur oxidation or ring epoxidation, are possible culprits for these adverse side effects. In this work, the metabolic activation of an anti-inflammatory agent, 1-(3-carbamoyl-5-(2,3,5-trichlorobenzamido)thiophen-2-yl)urea), containing a 2,5-diaminothiophene structure, was studied in liver microsomes in the presence of glutathione or N-acetylcysteine as trapping agents. In addition, the glutathione conjugate was detected in bile from a bile duct-cannulated rat study. The structure of the glutathione conjugate was identified by mass spectrometry and (1)H NMR. The glutathione molecule was attached to the thiophene ring, replacing the existing proton. Metabolic phenotyping experiments, using chemical inhibitors or recombinant cytochromes P450 (P450), demonstrated that CYP3A4 was the major P450 enzyme responsible for the metabolic activation, followed by CYP1A2, 2Cs, and 2D6. A novel metabolic activation mechanism is proposed whereby the 2,5-diaminothiophene moiety undergoes oxidation to a 2,5-diimine thiophene reactive intermediate. This mechanism was used to support efforts to eliminate reactive metabolite generation via structural modification of ring substituents using structure-activity relationships. The disruption of formation of the 2,5-diimine reactive intermediate resulted in the elimination of glutathione conjugate formation both in vitro and in vivo and provided a rational approach to mitigating potential safety risks associated with this class of thiophenes in drug research and development.
منابع مشابه
Cytochrome P450 and Non-Cytochrome P450 Oxidative Metabolism: Contributions to the Pharmacokinetics, Safety, and Efficacy of Xenobiotics.
The drug-metabolizing enzymes that contribute to the metabolism or bioactivation of a drug play a crucial role in defining the absorption, distribution, metabolism, and excretion properties of that drug. Although the overall effect of the cytochrome P450 (P450) family of drug-metabolizing enzymes in this capacity cannot be understated, advancements in the field of non-P450-mediated metabolism h...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملActivation of the anticancer drugs cyclophosphamide and ifosfamide by cytochrome P450 BM3 mutants.
Cyclophosphamide (CPA) and ifosfamide (IFA) are widely used anticancer agents that require metabolic activation by cytochrome P450 (CYP) enzymes. While 4-hydroxylation yields DNA-alkylating and cytotoxic metabolites, N-dechloroethylation results in the generation of neuro- and nephrotoxic byproducts. Gene-directed enzyme prodrug therapies (GDEPT) have been suggested to facilitate local CPA and ...
متن کاملNovel Colchicine Analogues Target Mitochondrial PT Pores Using Free Tubulins and Induce ROS-Mediated Apoptosis in Cancerous Lymphocytes
B-acute lymphoblastic leukemia (B-ALL) is the frequent pediatric malignity. Chemotherapy is the most practical approaches to deal with such malignancies. Microtubule-targeted agents are one of the most strategic drugs which formerly use in chemotherapy.Although,colchicine-binding anti-tubulin agents exhibited promising effects in clinical trials, their exact mechanism of action is not fully und...
متن کاملNovel Colchicine Analogues Target Mitochondrial PT Pores Using Free Tubulins and Induce ROS-Mediated Apoptosis in Cancerous Lymphocytes
B-acute lymphoblastic leukemia (B-ALL) is the frequent pediatric malignity. Chemotherapy is the most practical approaches to deal with such malignancies. Microtubule-targeted agents are one of the most strategic drugs which formerly use in chemotherapy.Although,colchicine-binding anti-tubulin agents exhibited promising effects in clinical trials, their exact mechanism of action is not fully und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 38 9 شماره
صفحات -
تاریخ انتشار 2010